Wavelet approximations of the Hamiltonian operator and computation of related energies
نویسنده
چکیده
Multiresolution analysis in Quantum Chemistry provide e cient computational methods. In this article, we propose several representations of the Hamiltonian operator arising from the Density Functional Theory, based on orthogonal and interpolating scaling function bases. These high order approximations allows to compute the potential and kinetic energies with a linear complexity. Finally numerical examples show the accuracy of the method.
منابع مشابه
Dilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملExistence and Iterative Approximations of Solution for Generalized Yosida Approximation Operator
In this paper, we introduce and study a generalized Yosida approximation operator associated to H(·, ·)-co-accretive operator and discuss some of its properties. Using the concept of graph convergence and resolvent operator, we establish the convergence for generalized Yosida approximation operator. Also, we show an equivalence between graph convergence for H(·, ·)-co-accretive operator and gen...
متن کاملOn the two-wavelet localization operators on homogeneous spaces with relatively invariant measures
In the present paper, we introduce the two-wavelet localization operator for the square integrable representation of a homogeneous space with respect to a relatively invariant measure. We show that it is a bounded linear operator. We investigate some properties of the two-wavelet localization operator and show that it is a compact operator and is contained in a...
متن کاملApplying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....
متن کاملCalculation of the triple and double cross sections in the proton-hydrogen impact at the ionization channel by removing singularity in the scattering amplitudes
In the present work, the triple and double cross sections of atomic hydrogen ionization in collision with the proton are calculated. The potential of the interaction is considered as a Coulombic; also, the first and second order Born approximations have been used. The singularity of the Green operator in the second order approximation has been removed for the analytical solution of the scatt...
متن کامل